Beamforming MATLAB Code for QAM Modulation
Advertisement
This page provides MATLAB source code for Beamforming. It includes output plots and mathematical equations related to Beamforming with QAM modulation.
QAM stands for Quadrature Amplitude Modulation.
Introduction to Beamforming
Beamforming is a technique used to enhance signal strength before transmission using multiple antenna arrays. It helps extend the coverage of cell towers to reach mobile subscribers further away.
The main types of beamforming techniques are:
- Analog Beamforming
- Digital Beamforming
- Hybrid Beamforming
Figure 1: Analog Beamforming Transmitter Block Diagram
Beamforming MATLAB Code
clear
N = 10^6;
nTx = 2;
M=4;
k = sqrt(1/((2/3)*(M-1)));
m = [1:sqrt(M)/2];
alphaMqam = [-(2*m-1) 2*m-1];
Eb_N0_dB = [0:30];
ipHat1 = zeros(1,N);
ipHat2 = zeros(1,N);
for ii = 1:length(Eb_N0_dB)
ip = randsrc(1,N,alphaMqam) + j*randsrc(1,N,alphaMqam);
s = k*ip; % normalization of energy to 1
n = 1/sqrt(2)*[randn(1,N) + j*randn(1,N)]; % white guassian noise, 0dB variance
h = 1/sqrt(2)*[randn(nTx,N) + j*randn(nTx,N)]; % Rayleigh channel
sr = (1/sqrt(nTx))*kron(ones(nTx,1),s); % Channel and noise Noise addition
h_tx = h.*exp(-j*angle(h));
y1 = sum(h.*sr,1) + 10^(-Eb_N0_dB(ii)/20)*n;
y2 = sum(h_tx.*sr,1) + 10^(-Eb_N0_dB(ii)/20)*n;
y1Hat = y1./sum(h,1);
y2Hat = y2./sum(h_tx,1);
% demodulation
y_re1 = real(y1Hat)/k; % real part
y_im1 = imag(y1Hat)/k;
y_re2 = real(y2Hat)/k; % real part
y_im2 = imag(y2Hat)/k; % imaginary part
ipHat_re1 = 2*floor(y_re1/2)+1;
ipHat_re1(find(ipHat_re1>max(alphaMqam))) = max(alphaMqam);
ipHat_re1(find(ipHat_re1<min(alphaMqam))) = min(alphaMqam);
ipHat_re2 = 2*floor(y_re2/2)+1;
ipHat_re2(find(ipHat_re2>max(alphaMqam))) = max(alphaMqam);
ipHat_re2(find(ipHat_re2<min(alphaMqam))) = min(alphaMqam);
ipHat_im1 = 2*floor(y_im1/2)+1;
ipHat_im1(find(ipHat_im1>max(alphaMqam))) = max(alphaMqam);
ipHat_im1(find(ipHat_im1<min(alphaMqam))) = min(alphaMqam);
ipHat_im2 = 2*floor(y_im2/2)+1;
ipHat_im2(find(ipHat_im2>max(alphaMqam))) = max(alphaMqam);
ipHat_im2(find(ipHat_im2<min(alphaMqam))) = min(alphaMqam);
ipHat1 = ipHat_re1 + j*ipHat_im1;
nErr1(ii) = size(find([ip- ipHat1]),2); % counting the number of errors
ipHat2 = ipHat_re2 + j*ipHat_im2;
nErr2(ii) = size(find([ip- ipHat2]),2); % counting the number of errors
end
simBer1 = nErr1/N; % simulated ber (no beam forming)
simBer2 = nErr2/N; % simulated ber (with beam forming)
theoryBerAWGN = 0.5*erfc(sqrt(10.^(Eb_N0_dB/10))); % theoretical ber
EbN0Lin = 10.^(Eb_N0_dB/10);
theoryBer = 0.5.*(1-sqrt(EbN0Lin./(EbN0Lin+1)));
p = 1/2 - 1/2*(1+1./EbN0Lin).^(-1/2);
theoryBer_nRx2 = p.^2.*(1+2*(1-p));
close all
figure
semilogy(Eb_N0_dB,simBer1,'ks-','LineWidth',2);
hold on
semilogy(Eb_N0_dB,simBer2,'rx-','LineWidth',2);
axis([0 35 10^-5 0.5])
grid on
legend('2Tx-1Rx (no Beamforming-sim)','2Tx-1Rx (Beamforming-sim)');
xlabel('Eb/No, dB');
ylabel('Bit Error Rate');
title('BER for QAM modulation in Rayleigh Fading channel');
Input and Output of Beamforming QAM MATLAB Source Code
Run the downloaded BeamformingQAM.m
file after extracting the contents of the folder.
The output MATLAB image will look similar to this: