LTE vs 5G TF vs 5G NR: Key Differences

lte
5g
nr
mobile communication
wireless technology

This article compares LTE, 5G TF (Technical Forum), and 5G NR (New Radio) technologies, highlighting their differences.

Specifications Comparison

The following table summarizes the key specifications of LTE, 5G TF, and 5G NR.

SpecificationsLTE5G TF (Verizon’s 5G Technical Forum)5G NR (3GPP 5G New Radio)
Full FormLong Term EvolutionVerizon’s 5G Technical Forum3GPP 5G New Radio
Radio Frame Duration10 ms10 ms10 ms
Number of subframes in a frame105010
Number of slots in a frame20 (each of 1ms duration)100 (each of 0.1ms duration)20 (each of 1ms duration)
Number of RBs (Resource Blocks)100 (maximum)100 (maximum)100 or more
Carrier Aggregation (Maximum CCs)5 (Rel. 10)816
Subcarrier Spacing15 KHz75 KHzFlexible: 2n *15 KHz (Where, n = -2,0,1,…,5) 15 KHz, 30 KHz, 60 KHz, 120 KHz, 240 KHz, (480 KHz)
Carrier Bandwidth1.4/3/5/10/15/20 MHz (For 20 MHz, using carrier aggregation, BW upto 100 MHz can be used)100 MHzVariable, maximum per CC is 400 MHz (From 100 to 200 MHz for less than 6 GHz band, From 100 MHz to 1 GHz for greater than 6 GHz band)
Frequency BandsUnder 6 GHz28 GHzupto 100 GHz
BeamformingApplicable to certain transmission modes with DL/UL reciprocitywith and without DL/UL reciprocity
ModulationUpto 256-QAMQPSK, 16-QAM, 64-QAMQPSK, 16-QAM, 64-QAM and 256-QAM
MIMOUpto 8X82x2 OnlyUpto 8X8
Channel Coding SchemeTurbo coding for dataLDPC for dataNR Polar codes (Control); NR LDPC (Data)

Difference between LTE and 5G NR

Table 2 outlines the key differences between LTE and 5G NR with respect to the physical layer and the different channels used in these standards.

FeaturesLTE5G NR
Physical layer waveformsDownlink: CP-OFDM, Uplink: DFT-S-OFDMDownlink: CP-OFDM, Uplink: CP-OFDM or DFT-S-OFDM
Symbol duration32.552 ns for subcarrier spacing of 15 KHz and N FFT of 20480.509 ns for subcarrier spacing of 480 KHz and N FFT of 4096
Subcarrier spacingFixed, 15 KHzVariable, 15/30/60/120/240/480 KHz
FFT Size20484096 (<=240 KHz SCS), 8192 for 480 KHz SCS
Number of slots per subframeFixedVariable, Depends on subcarrier spacing
CP (Cyclic Prefix) typeNormal CP, Extended CP• Normal CP for all subcarrier spacing (SCS) • Extended CP is supported for 60 KHz SCS
Max. number of data subcarriers12003300
Number of symbols per slot7 symbols for normal CP, 6 symbols for extended CP• 14 symbols for normal CP, 12 symbols for extended CP • 2, 4 and 7 symbols for mini-slots
UL/DL ratio change
Synchronization signals• The PSS is constructed from a frequency-domain ZC sequence of length 63. • Each SSS sequence is constructed by interleaving, in the frequency-domain, two length-31 BPSK-modulated secondary synchronization codes.• 5G NR SS consists of PSS (Primary SS) and SSS (Secondary SS). • A BPSK modulated m-sequence of length 127 is used for NR PSS. • BPSK modulated Gold sequence of length 127 is used for NR SSS.
Reference signals• Downlink: Reference Signal (RS) • Uplink: DMRS, SRS• Downlink : DMRS (Demodulation Ref. Signal) , PTRS (Phase Tracking RS) and CSI-RS (Channel State Inf. RS) • Uplink: DMRS, PTRS and SRS •
PBCH
RACH
PDCCH
PUCCH
SS block sweeping1 4 for < 3 GHz, 8 for < 3 to 6 GHz, 64 for 6 to 52.6 GHz
Channel coding for various channels• PBCH/PDCCH: TBCC • PDSCH/PUSCH : Turbo Code • PUCCH: RM Block Code• PBCH/PDCCH/PUCCH : Polar code • PDSCH/PUSCH: LDPC
HARQ Round Trip Time• FDD: 9ms, TDD: >=8 ms• 0.25 to 16 ms
CA (Carrier Aggregation), DuCo• CA upto 32 carriers • DuCo upto 64 carriers• CA upto 16 carriers • DuCo upto 32 carriers
UE Bandwidth Adaptation• Not allowed• Allowed
Mobility• CRS-based RSRP• SSS-based RSRP for cell or beam • CSI-RS based RSRP for beam or transmission point
MIMO/Beamforming• Digital Beamforming • Diversity Tx:SFBC • Open loop TxCDD with precoder cycling (PC), 1-port PC • Closed loopTx spatial multiplexing• Hybrid beamforming • Open Loop Tx: 1 port PC (UE Transparent) • Closed Loop Tx: Spatial Multiplexing
Physical Layer
5G NR UE Power Classes Explained

5G NR UE Power Classes Explained

Understand 5G NR UE power classes (1, 2, 3, 4) with EIRP and output power limits for user equipment based on 3GPP standards.

5g
nr
user equipment