Iris Detection and Recognition: MATLAB Code
Advertisement
This page provides a step-by-step guide with MATLAB code for eye iris detection and recognition.
clear all;
close all;
clc;
% Reading the image
Img=imread('002L_1.png');
%% Pre-Processing and Normalization
figure;
imshow(Img);
title('INPUT EYE IMAGE');
%% Step 1: Converting to Grayscale from RGB
Gray_imag=rgb2gray(Img);
figure;
imshow(Gray_imag);
title('IMAGE after Gray conversion');
% Deleting extra portion
t2=Gray_imag(:,65:708);
t3=t2(18:563,:);
figure;
imshow(t3);
title('IMAGE after Deleting extra portion');
%% Step 2: Resizing the image (546x644) to 512 x 512
t4=imresize(t3,[512,512],'bilinear');
figure;
imshow(t4);
title('IMAGE after resize');
%% Step 3: Histogram Equalization
Hist_eq_img = histeq(t4,512);
figure;
imshow(Hist_eq_img);
title('IMAGE after Histogram Equalization');
% Step 4: Gaussian Filtering
G = fspecial('gaussian',[512 512],20); %Filter it
Hist_eq_img=double(Hist_eq_img);
Ig = imfilter(Hist_eq_img,G,'same');
%Display
%% Step 5: Canny Edge detection
BW2 = edge(Ig,'canny',0.53,1);
figure;
imshow(BW2);
title('IMAGE after canny edge detection');
Step-by-Step Image Processing
Here’s a visual breakdown of the image processing steps:
STEP 1: RGB image to grayscale conversion
STEP 2: Image Resize
STEP 3: Histogram Equalization
STEP 4: GAUSSIAN FILTERING
STEP 5: CANNY EDGE DETECTION
Downloads
Input EYE Image:
Click to download (No direct link provided in original text, assume user has this)